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Nomenclature

A
c matrix de�ned by equation (B21)

A� system matrix for perturbed phase 0 simulation

(A;B;C;D) minimal state-variable realization matrices for G(s)

( eA; eB; eC; eD) balanced realization matrices used to de�ne optimal compensator

in appendix B

( bA; bB; bC; bD) realization matrices employed in de�ning optimal robust compen-

sator in appendix B

(Af ;Bf ;Cf ;Df ) state-variable realization matrices of 25-mode model in phase 0

simulation

(At;Bt;Ct;Dt) state-variable realization matrices for truncated system �G(s) in

phase 0 simulation

(A
(i)
W
;B

(i)
W
;C

(i)
W
;D

(i)
W
) state-variable realization matrices for loop-shaping functions ( i =

1,2), de�ned by equations (55) to (61)

C �eld of complex numbers

C� output matrix in state-variable realization of perturbed phase 0

system

d disturbance vector (see �g. 2)

F generalized control gain matrix de�ned by equation (A27)

f(s) scalar function de�ned by equation (54)

FL(P;K) lower linear fractional transform

FU(P;�P) upper linear fractional transform

G(s) p�m transfer function matrix with real-rational function elements

�G(s) perturbation to G(s) matrix

GA(s) G(s) matrix after augmentation by loop-shaping functions

Gf design model transfer function matrix for evolutionary model study

G�(s) perturbed plant matrix

G�(s) transfer function matrix for perturbed G(s)

G�A
(s) G�(s) matrix after augmentation by loop-shaping functions

g acceleration due to gravity (1g � 32:174 ft/sec2)

H generalized �lter gain matrix de�ned by equation (A21)

H1 Hardy space of complex-valued functions (F (s)) of a complex

variable (s) that are analytic and bounded in the open right half-

plane in the sense that sup fj F (s) j: Re (s) > 0g < b where b is

a real number

I identity matrix of appropriate order

Im; Ip m�m and p� p identity matrices, respectively
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j =
p
�1

K(s) feedback compensator matrix for G(s)

KA(s) feedback compensator matrix for GA(s)

Kc(s) central suboptimal compensator matrix de�ned by equation (B28)

(k; i; a) positive real parameters employed in equation (54)

M,N factors in right-coprime factorization of G(s) matrix de�ned by

equation (A24)

fM; eN factors in left-coprime factorization of G(s) matrix de�ned by

equation (4)

�fM;� eN perturbations to left-coprime factors of G(s) matrix

fMA;
eNA left-coprime factors for GA(s) matrix

fMA�
; eNA�

left-coprime factors for GA�
(s)

n order of system matrix for minimum realization of G(s)

n1; n2 orders of system matrices in state-variable realizations of W1(s)

and W2(s), respectively

P generalized plant transfer function matrix (also used in appendix A

to denote reachability gramian)

�P generalized perturbation matrix

Q observability gramian matrix

R matrix de�ned by equation (B25)

R �eld of real numbers

Rn vector space of n � 1 matrices with real elements

Rn�n vector space of n� n matrices with real elements

RH1 subset of RL1 made up of all asymptotically stable, proper trans-

fer function matrices

RL1 space of all real-rational proper transfer function matrices that

have no poles on the imaginary axis of the complex plane

r multiplicity of largest Hankel singular value of ( eA; eB; eC; eD)

realization

r̂ exogenous inputs (see �g. 2)

S matrix de�ned by equation (B19)

s Laplace transform variable

t time variable, t 2 [0;1)

U;V right-coprime factors for compensator K matrix de�ned by equa-

tion (23)

bU matrix de�ned by equation (B10)

u(s) Laplace transform of u(t) vector
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u(t) system input vector in time domain

(U;V); ( eU; eV) left- and right-coprime factors used in equations (A13) and (A23),

respectively

v exogenous input vectors to P in �gure 1

W1(s);W2(s);W(s) transfer function matrices used in loop shaping

cW
1

matrix de�ned by equation (B27)

X matrix solution of generalized control algebraic Riccati equation

(GCARE)

y(s) Laplace transform of y(t) vector

y(t) system output vector in time domain

Z matrix solution of generalized �lter algebraic Riccati equation

(GFARE)

z error signal vector from P (see �g. 1)

0 null matrix of appropriate order

� matrix de�ned by equation (B9)


 positive real number, 1=�



min

positive real number, 1=�max

(��)i random numbers uniformly distributed within [�0.1, 0.1], where

i = 1; : : : ; 9

(�!)i random numbers uniformly distributed within [�0.01, 0.01], where

i = 1; : : : ; 9

� positive real number used as a robustness measure

�max largest value of � achievable by choosing K from all compensators

that stabilize G

bZ diagonal matrix of damping ratios of 25-mode phase 0 simulation

model

�i damping ratio for ith mode of phase 0 simulation model, where

i = 1; : : : ; 25

(�p)i perturbed value of damping ratio �i, where i = 1; : : : ; 9

� measurement noise (see �g. 2)

�i(A) ith eigenvalue of matrix A

� diagonal gramian matrix occurring in balanced realization

�i(A) ith singular value of matrix A

��(A) largest singular value of matrix A

�(A) smallest singular value of matrix A

�i(G(s)) ith Hankel singular value of matrix G 2 RH1

� mode shape matrix

v



b� RH1 function satisfying matrix k b� k1 � 1


 diagonal matrix of frequencies of 25-mode phase 0 simulation

model, rad/sec

! frequency, rad/sec or Hz

!i frequency of ith mode in phase 0 simulation model, rad/sec or Hz

(!p)i perturbed values of !i, rad/sec or Hz

Abbreviations:

CSI Control-Structures Interaction

GCARE generalized control algebraic Riccati equation

GFARE generalized �lter algebraic Riccati equation

inf greatest lower bound

NLCF normalized left-coprime factorization

NRCF normalized right-coprime factorization

sup least upper bound

Subscripts:

cl closed loop

H Hankel norm

max maximum

min minimum

Superscripts:

T matrix transpose

�1 matrix inverse

* matrix transpose with argument s replaced by �s

Notations:

k : k1 H1 norm de�ned by equation (A12)

k : kH Hankel norm de�ned by equation (A10)

: = de�nition by equality (e.g., A := B denotes A is de�ned by

equality to B)2
4A

��� B

C

��� D

3
5 block matrix notation: transfer function matrix C(sI�A)�1B+D

for compatible matrices (A;B;C;D)
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Abstract

Stabilization is a fundamental requirement in the design of feedback compen-

sators for 
exible structures. The search for the largest neighborhood around

a given design plant for which a single controller produces closed-loop stabilit y

can be formulated as an H1 control problem. The use of normalized coprime

factor plant descriptions, in which the plant perturbations are de�ned as ad-

ditive modi�cations to the coprime factors, leads to a closed-form expression

for the maximum neighborhood boundary allowing optimal and suboptimal H1
compensators to be computed directly without the usual 
 iteration. This pa-

per gives a summary of the theory on robust stabilization using normalized co-

prime factor plant descriptions, and it describes the application of the theory to

the computation of robustly stable compensators for the phase 0 version of the

Control-Structures Interaction (CSI) Evolutionary Model. Results from the ap-

plication indicate that the suboptimal version of the theory has the potential of

providing the basis for the computation of low-authority compensators that are

robustly stable to expected variations in design model parameters and additive

unmodeled dynamics.

Introduction

In the design of controllers for physical systems, some trade-o� is usually performed between

design model accuracy and mathematical complexity. The more accurate analysis models often

require computational time that is too excessi ve to qualify them as design models for control

purposes. Also, many of the most widely used multivariable design techniques work best for

moderate-order, linear, time-invariant design models (Maciejowski 1989). In practice, high-order

nonlinear models are typically linearized about some operating condition and have their model

order reduced to produce design models that conform to computational limitations or compensator

implementation constraints. These practicalities introduce modeling errors in the form of unmodeled

dynamics that must be accounted for in the controller design process. Additionally, parameters in

the design and analysis models are not always accurately known and can cause destabilizing e�ects

if parametric uncertainty is ignored or improperly treated.

The foregoing considerations are especially critical in the design of controllers for 
exible space

structures (Joshi 1989). Space structure controller design models are generally obtained through

some order-reduction procedure applied to a high-order analysis model obtained from �nite element

techniques. The order-reduction process essentially deletes a portion of the �nite element model to

produce a lower order controller design model. Although the unmodeled dynamics (represented by

the deleted portion) are no longer contained in the design model, they can still be in
uenced by

control inputs. Care must be taken in the design process to avoid control and observability spillover

e�ects (Balas 1982) that destabilize the unmodeled dynamics. Also, the high-order model contains

parametric uncertainties in natural frequencies, damping ratios, and mode shapes and slopes that

get passed through to the design model. A fundamental requirement of control law design for 
exible

space structures is then the attainment and preservation of closed-loop stability in the presence of

unmodeled dynamics and parameter uncertainties.

Nonparametric uncertainties, such as unmodeled dynamics, typically occur in the high-frequency

region of physical models. In controller design, unmodeled dynamics are normally treated, often

at the expense of reduced performance, by rolling o� the compensator over a high-frequency band.

Rolling o� the compensator in this manner can be especially limiting for 
exible structures in which

unknown elastic modes are low-frequency, closely spaced, and fall within the bandwidth of the

controller. The treatment of parametric uncertainties is still an open area of research ( Dorato and



Yedavalli 1990). In this study we are concerned with compensators that robustly stabilize a given

system in the presence of both parametric and nonparametric uncertainties.

Uncertainties may be viewed as perturbations about a nominal design model. If a single

compensator stabilizes the nominal plant and, in addition, all systems within some neighborhood of

the plant generated by the perturbations, the compensator is said to robustly stabilize the overall

family of systems. The search for the largest neighborhood around a given design plant for which a

single controller produces closed-loop stability can be formulated as an H1 control problem. Glover

and McFarlane (1989) show that the use of normalized coprime factor plant descriptions, in which the

plant perturbations are de�ned as additive modi�cations to the coprime factors, leads to a closed-

form expression for the maximum perturbation radius. The maximum radius can be computed

directly in terms of the design model, thus allowing optimal and suboptimal robust compensators

to be found without the usual 
 iteration of the H1 design.

This paper describes an application of the Glover-McFarlane robust stabilization theory to the

control of a simulated structure con�gured to have many of the dynamic characteristics and controller

design di�culties associated with 
exible space structures. We begin with a description of the general

robust stabilization problem followed by an overview of its results for normalized coprime factor

plant descriptions. Mathematical background material is presented in appendix A, and the major

computational algorithms for computing optimal and suboptimal robust controllers are presented

in appendix B. Next, these theoretical results are applied to the computation of robustly stable

compensators for the phase 0 version of the NASA Control-Structures Interaction (CSI) Evolutionary

Model. Analysis of the compensators indicates that for the class of applications considered, the

suboptimal version of the theory has the potential of providing the basis for the computation of

low-authority controllers that are robustly stable to expected variations in design model parameters

and additive unmodeled dynamics.

General Robust Stabilization Problem

In terms of transfer function matrix models of the design system, plant uncertainties (unmodeled

dynamics and parameter inaccuracies) can be modeled in several ways. Let G(s) represent a p�m

transfer matrix and �G(s) denote some perturbation to G(s), both with real-rational elements. A

perturbation is called additive if the perturbed plant (G�) is written as

G� = G +�G (1)

and it is called multiplicative when

G� = (Ip +�G)G (2)

or

G� = G(Im+�G) (3)

A third method of modeling plant uncertainty involves the use of coprime factorizations (appen-

dix A). Here, G is written in coprime factor form and the system perturbations are de�ned in terms

of perturbations to the respective coprime factors. Any (stable or not) transfer function matrix

(G(s)) can be represented in terms of a pair of asymptotically stable, real-rational, proper transfer

function matrices that are coprime. For a left-coprime factor form with (fM 2 RH1; eN 2 RH1),

we have

G = fM
�1

eN (4)

and the perturbed system (G�) is given by

G� = (fM+�fM)�1 ( eN+� eN) (5)
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with

�G = [�fM;� eN] 2 RH1 (6)

Controller design employing uncertainty models in equations (1) to (3) has been widely inves-

tigated; see, for example, Chen and Desoer (1982) and Doyle and Stein (1981). Design methods

employing coprime factor models such as equations (4) to (6) have not been as widely accepted

or employed as the additive and multiplicative forms; however, they have been shown to have

many theoretical and computational bene�ts by Vidyasagar (1985) and by McFarlane, Glover, and

Vidyasagar (1990).

Each uncertainty model can be represented as a special case of an upper linear fractional

transformation

G� = FU(P;�P) = P22+P21 �P(I�P11�P)
�1

P12 (7)

where det(I�P11�P) 6= 0 and

P =

2
6664
P11 P12

P21 P22

3
7775 (8)

The standard plants P associated with three of the foregoing uncertainty descriptions are

P =

2
6664
O I

I G

3
7775 �P = �G (9)

P =

2
6664
O G

I G

3
7775 �P = �G (10)

and

P =

2
6664
OeM�1 I

G

fM�1 G

3
7775 �P = [� eN;��fM] (11)

for equations (1), (2), and (5), respectively. Equation (7) represents a generali zed uncertainty model,

and the process of using feedback to stabilize and control P can be represented as the block diagram

shown in �gure 1.

By employing �gure 1, a general robust stabilization problem can be posed (McFarlane and

Glover 1990). From viewing G� as a family of perturbed models for a given class of perturbations

�P, one can seek a single compensator K(s) that stabilizes not only G (that is, G� with �P = 0)

but all members of the G� family. If �P belongs to a class of admissible perturbations de�ned as

the union of the set of stable bounded perturbations (RH1) and the set of perturbations in RL1 for

which G and G� have an equal number of closed right half-plane poles, then the following theorem

can be established (McFarlane and Glover 1990).

Robust Stabilization Theorem

For any P22 of P given by equation (8) with stabilizable and detectable state-variable realization,

the compensator K(s) of �gure 1 stabilizes G� = FU(P;�P) for all admissible values of �P such

that k �P k1 < � if, and only if,

3



1. K stabilizes G

and

2. k FL(P;K) k1 < ��1

where the lower linear fractional transform is given by

FL(P;K) = P11 +P12 K(I�P22K)�1 P21 (12)

The parameter � in the theorem can be viewed as a measure of robust stability for a given closed-

loop system. The problem of �nding the largest level of robust stability is termed the optimal robust

stabilization problem and is formally stated in the following discussion.

Optimal Robust Stabilization Problem

Find the largest strictly positive number � = �max such that for all admissible �P values satisfying

k �P k1 < �, a single controller exists that stabilizes FU(P;�P). From the robust stabilization

theorem,

�max=

�
inf

K
k FL(P;K)k

1

�
�1

(13)

where K is chosen from all controllers that stabilize G.

The computation of �max thus involves the solution of an H1 optimization problem such as that

discussed by Francis (1987) or Doyle et al. (1989); that is, �nd

inf

K
k FL(P;K) k1 = 
min (14)

over all controllers K that stabilize G. This H1 problem can be posed for each representation

of the additive, multiplicative, and coprime factorization uncertainty classes. In the additive and

multiplicative cases, the solution typically involves a computationally intensive iterative procedure

to �nd the smallest 
 (whereby 
 = 
min) such that the suboptimal robust stabilization problem

inf

K
k FL(P;K) k1 � 
 (15)

is solved. The solution of the optimal robust stabilization problem for the coprime factorization

uncertainty class can also be approached in a similar manner; however, if the coprime factors of G

are normalized, the 
 iteration procedure can be completely avoided and the computational e�ort

greatly reduced.

Robust Stabilization Problem for Descriptions of the Normalized Coprime

Factor Plant

Let G(s) have the coprime factor plant representation of equation (4). With P and �P given

by equations (11),

FL(P;K) =

�
K

I

�
(I�GK)�1 fM�1 (16)

Also, because [�fM;� eN] 2 RH1, the set of admissible perturbations contains only elements within

RH1, whereby the need to observe the equality condition on the poles of G and G� is completely

eliminated.
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When the coprime factors of equation (4) are normalized, that is, satisfy the relation

fM(s) fM�(s) + eN(s) eN�(s) = I (17)

the solution to the corresponding optimal or suboptimal robust stabilization problem has a surpris -

ingly simpli�ed form. For the problem of designing a controller K that robustly stabilizes a plant G

written in normalized left-coprime factor form, the following properties hold :

1. A controller K is stabilizing for G and satis�es

k

�
K

I

�
(I�GK)�1 fM�1 k1 � 
 = ��1 (18)

if, and only if, K has a right-coprime factorization

K = UV�1 (19)

for some (U 2 RH1;V 2 RH1) satisfying

k [� eN;fM] +

�
U

V

�
�

k1 � (1� 
�2)1=2 = (1� �2)1=2 (20)

2. Solutions to the optimal robust stabilization problem using normalized left-coprime factoriza-

tion give

inf

K
k

�
K

I

�
(I�GK)�1 fM�1 k1=

�
1� k [ eN;fM] k

2

H

�
�1=2

(21)

where the subscript H refers to the Hankel norm (which is discussed in appendix A).

3. The maximum robust stability margin is

�max = (

min

)�1 =

�
1� k [ eN;fM] k

2

H

�
1=2

> 0 (22)

4. All optimal controllers are given by equation (19), where U and V satisfy

k [� eN;fM] +

�
U

V

�
�

k1 = k [ eN;fM] kH < 1 (23)

Proofs of properties 1 to 4 may be found in either Glover and McFarlane (1989) or McFarlane and

Glover (1990).

Properties 2 and 3 state that for the robust stabilization problem using optimal normalized

left-coprime factorizations (NLCF), a 
 iteration to solve the H1 problem is not necessary. The

value of 

min

, given by the right-hand side of equation (21), can be found through the computation

of the largest Hankel singular value of the stable transfer matrix [ eN;fM] obtained in the initial

NLCF of G. Properties 1 and 4 show that both the optimal (eq. (14)) and suboptimal (eq. (15))

NLCF robust stabilization problems are solved by computing the closest (in the H1 norm sense)

completely unstable (all poles in the open complex right half-plane) rational function

�
U

V

�
�

to the

stable RH1 function [� eN;fM]. This computation involves a version of the Nehari extension problem
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(Francis 1987). By using

�
U

V

�
�

, U and V in RH
1

can be constructed for use with equation (19)

to form the compensator K. State-variable realizations for the suboptimal problem with 
 > 
min
can be found in Glover and McFarlane (1989) or McFarlane and Glover (1990). The theoretical

approach to solve the optimal problem with 
 = 
min can be found in Glover (1984). Algorithms

for constructing state-variable realizations of the compensator K for both (optimal and suboptimal)

problems are collected in appendix B of this paper.

Note that the results obtained from application of the foregoing robust stabilization theory can

be conservative. The approach of analyzing perturbations (�P) only in terms of their H
1

norm

bounds rather than taking advantage of any known internal structure is fundamentally conservative

by nature (Maciejowski 1989). Known structural properties of perturbations may be incorporated

by using structured singular value techniques such as those implemented by Balas et al. (1991). In

addition, a feedback controller K may well stabilize G and G� either for some particular structured

�P such that k �P k
1

> �max or for all structured �P terms within a subset of k �P k
1
� �max

containing �P = 0 while not satisfying the more restrictive condition of simultaneously stabilizing

all elements of G� for k �P k
1
� �max.

Loop-Shaping Procedure Within the NLCF Robust Stabilization Structure

Because G = fM�1 eN is a normalized left-coprime factorization, we can write

k

�
K

I

�
(I�GK)�1fM�1 k

1
= k

�
K

I

�
(I�GK)�1fM�1 [fM; eN] k

1

= k

�
K(I�GK)�1 K(I�GK)�1G
(I�GK)�1 (I�GK)�1G

�
k
1
� 
 (24)

Thus, for either the optimal or suboptimal versions of the NLCF robust stabilization problem, the

satisfaction of equation (18) for 
 � 
min also implies that (Safonov and Chiang 1988)

k K(I�GK)�1 k
1
� 
 (25)

k (I�GK)�1 k
1
� 
 (26)

k K(I�GK)�1G k
1
� 
 (27)

and

k (I�GK)�1G k
1
� 
 (28)

The signi�cance of the individual transfer function matrices used in equations (25) to (28) may be

seen from analyzing the feedback control loop in �gure 2. The system G is subject to exogenous

inputs in the form of reference commands or actuator noise ( r̂), disturbances re
ected to the output

(d), and measurement noise (�). From �gure 2 we can derive

y(s) = (I�GK)�1GK �(s) + (I�GK)�1G r̂(s) + (I�GK)�1 d(s) (29)

u(s) = K(I�GK)�1 [d(s) + �(s)] + (I�KG)�1 r̂(s) (30)

u(s)� r̂(s) = K(I�GK)�1 [d(s) + �(s)] +K(I�GK)�1G r̂(s) (31)

In equations (29) to (31) the standard notation in writing f(s) to represent the Laplace transforma-

tion of f(t) has been used. Equations (29) to (30) re
ect the well-known inherent trade-o� between

attenuation of disturbances (d) and �ltering out measurement and/or actuator noise (�; r̂). Be-

cause the sensitivity
�
(I�GK)�1

�
and complementary sensitivity

�
(I�GK)�1(�GK)

�
transfer

6



function matrices are related by

(I�GK)�1+ (I�GK)�1 (�GK) = I (32)

both cannot be kept small over the same frequency range. Normally, the disturbances are assumed to

be large in magnitude only over a low-frequency range, and actuator and sensor noise are appreciable

only over a complementary high-frequency range. The compensator K is typically designed to cause

k (I�GK)�1 k1 to be small over low-frequency ranges and k (I�GK)�1GK k1 to be small over

high-frequency ranges.

The NLCF robust stabilization compensators cause equations (25) to (28) to be satis�ed over

the entire frequency range, whereby the output y may be subject to any high-frequency noise. Such

design di�culties are normally addressed through frequency-dependent weighting matrices applied

directly to the sensitivity and complementary sensitivity matrices before compensator design. Only

a special class of weighting matrices are shown to be allowed if the exact-solution advantage of the

NLCF robust stabilization problem is to be preserved (McFarlane and Glover 1990).

Let W1(s) and W2
(s) be system precompensator and postcompensator matrices, respectively,

and de�ne an augmented plant GA(s) by

GA(s) =W
2
(s) G(s) W

1
(s) (33)

Performing an NLCF robust stabilization design with G replaced by GA yields a dynamic com-

pensator KA(s) that robustly stabilizes GA. Figure 3(a) gives a block diagram illustrating this

loop-shaping procedure. Simple block manipulation yields �gure 3(b), which shows that the corre-

sponding compensator K to be applied to the unshaped plant G is

K(s) =W
1
(s) KA(s) W2

(s) (34)

We then have

��1A;max =
�
1� k [ eNA;

fMA] k
2

H

�
�1=2

=
inf

KA
k

�
KA
I

�
(I�GAKA)

�1[I;GA] k1

=
inf

K
k

"
W�1

1
K(I�GK)�1W�1 W�1

1
K(I�GK)�1GW

1

W
2
(I�GK)�1W�1

2
W

2
(I�GK)�1GW

1

#
k1 (35)

which indicates the weighting con�guration that can be applied to the elements of equation (24)

if the exact-solution structure is to be preserved. In general, if other weighting con�gurations are

desired, the normal 
 iteration procedure is required.

The introduction of dynamic weighting matrices always increases the order of the compensator.

Let n be the order of a minimal realization of G(s); n
1
be the order of W

1
(s), and n

2
be the order

of W
2
(s). Given state-variable realizations for W

1
(s);W

2
(s), and KA(s), repeated application of

equation (A5) yields a state-variable realization for K(s). The order of the realization for K(s) will

be � n+ 2(n1+ n2) after elimination of any uncontrollable and unobservable modes. Lower order

compensators can be obtained through application of compensator order-reduction methods such as

that described by Anderson and Liu (1989). However, compensator order-reduction methods should

be used with caution because they can attenuate robust stability.

Stability Robustness to Unmodeled Dynamics

In 
exible space structures, perturbations in the form of unmodeled dynamics occur naturally in

the additive form (eq. (1)). A direct relationship does not seem to exist in de�ning [ � eN;�fM] as a

7



function of a given additive �G in equation (1). Setting

G� = fM�1 eN +�G = (fM+�fM)�1( eN+� eN) (36)

yields

(fM+�fM)�G = [� eN;�fM]

�
Im

�G

�
(37)

For small k �fM�G k1, equation (37) becomes

�G = fM�1[� eN;�fM]

�
Im

�G

�
(38)

for which a solution is

[� eN;�fM] = fM �G(Im+G�G)�1(Im;�G
�) (39)

Then, robust stability is preserved if

k fM �G(Im+G�G)�1(Im;G
�) k1 < �max

Rigorous use of equation (39) is likely to produce conservative designs. In the application of the

NLCF robust stabilization theory that follows, stability robustness to additive unmodeled dynamics

in the form of equation (1) is incorporated by use of the weighting matrices in equation (34) and is

analyzed through the examination of closed-loop conditions for stability robustness (Francis 1987)

k �G K(I�GK)�1 k1 < 1 (40)

or the more conservative su�cient condition for inequality (40)

��[�G(s)]��[K(I�GK)�1(s)] < 1 (41)

for s = j! and ! 2 [0;1).

In �gure 2, let

K(s) =

24Ac

��� Bc

Cc

��� Dc

35 (42)

and

G(s) =

24A
��� B

C

��� D

35 (43)

Then, state-variable realizations for the transfer matrices in equations (29) to (31) can be formed,

wherein each has the same system matrix given by

A
cl
=

"
A+B(I�DcD)�1DcC B(I�DcD)�1Cc

Bc(I�DDc)
�1
C Ac +BcD(I�DcD)�1Cc

#
(44)

An eigenvalue analysis of A
cl
often gives an indication of the e�ect of the compensator on the open-

loop eigenvalues of A. An eigenvalue analysis of A
cl

can occasionally give a measure of stability

robustness to additive perturbations when the realization (A, B, C, D) in equation (44) is replaced

by a state-variable realization of G�.
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Robust Stabilization of the Phase 0 Evolutionary Model

In this section, the previously discussed theory and algorithms for the robust stabilization of a

plant modeled in normalized left-coprime factorization form are applied to produce compensators

for the control of a model of a laboratory structure that has many of the characteristics and design

di�culties associated with 
exible space structures. Except for certain high-order transient response

simulations, all computations were performed using a 486 personal computer employing the 386

MATLABTM computational environment in Anon. (1990). Use was also made of software from the

MATLAB Control System Toolbox (Little and Laub 1986) and Robust-Control Toolbox (Chiang

and Safonov 1988). Balanced realizations were computed by using the algorithm based on Singular

Value Decomposition described by Laub et al. (1987). The H1 norms were calculated by using the

bisection algorithm of Boyd, Balakrishnan, and Kabamba (1989).

Description of Phase 0 Model

The Control-Structures Interaction (CSI) Evolutionary Model is a laboratory testbed concept in

which a sequence of testbeds is evolved with each new facility having more challenging dynamics

and control characteristics than the previous one. The testbeds are to be designed and constructed

at the Langley Research Center for the experimental validation of control techniques and integrated

design methodology developed under the CSI program at Langley (Newsom et al. 1990). The phase 0

model was the �rst testbed to be constructed under this program, but, unfortunately, the phase 0

model is no longer in existence at Langley. However, many useful studies were performed using the

phase 0 model (for example, see Lim, Maghami, and Joshi (1992); Maghami, Joshi, and Armstrong

(1993); Lim and Balas (1992), and its data base has been archived and is still available for this and

future studies. A schematic of the phase 0 structure is shown in �gure 4, and a detailed description

can be found in Belvin et al. (1991).

The phase 0 structure consisted of two vertical towers and two horizontal booms attached to a

central 62-bay-truss main section with each bay being a 10-in. cube. (See �g. 4.) The structure

was suspended from the laboratory ceiling by springs and two long cables designed to minimize the

interaction between the suspension and the structural modes. A laser source was mounted at the top

of the taller vertical tower, and a 16-ft re
ector with a mirrored surface was mounted on the shorter

tower. The laser beam was re
ected by the mirrored surface onto a detector surface 660 in. above the

re
ector. The total structural weight was 741 lb. Eight proportional bidirectional gas thrusters (air

jets) provided the input force actuation, and eight nearly collocated servo accelerometers provided

output measurements.

Global line-of-sight pointing studies using the laser targeting system have been performed by Lim

and Balas (1992). The present study is directly concerned with only vibration suppression about

a given operating point and does not treat laser targeting as such. However, vibration suppression

of the laser tower modes is a critical part of our design requirements because damping of the laser

tower structure was a troublesome issue in previous laboratory tests.

The phase 0 model had six nonstructural modes (due to suspension) and many signi�cant elastic

modes. The NASTRAN �nite element model (Belvin et al. 1991) consisted of 3560 degrees of

freedom. A total of 86 modes with frequencies below 50 Hz were selected as a truth or evaluation

model. For this study, as in previous studies (Lim, Maghami, and Joshi 1992), a reduced-order

model consisting of 25 modes (selected from the 86 modes through a controllability and observability

analysis) was used for the controller design model. Table I shows the frequency range of these

25 modes in hertz. Frequencies of the �rst six pendulum/suspension modes, brought about by the

cable suspension in a 1g environment, range from 0.147 to 0.874 Hz. The �rst two elastic modes

(7 and 8) are truss beam bending in the XY - and XZ-planes (de�ned in �g. 4) with frequencies of

1.474 Hz and 1.738 Hz, respectively. A uniform damping ratio of 0.5 percent is assumed for all the

modes.
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By using data from the �nite element analysis, a dynamic mathematical model in the modal

coordinate system can be constructed. A 50th-order state-variable realization of this model in

(block) phase-canonical form will appear as (Af ;Bf ;Cf ;Df) where

Af =

�
0 I

�
2 �bZ
�

Bf =

�
0

�T

�
Cf = [0;�]Af Df = ��T (45)

with


 = diag(!
1
; !

2
; : : : ; !

25
) (46)

bZ = diag(2�
1
!
1
; 2�

2
!
2
; : : : ; 2�

25
!
25
) (47)

and � is an 8 � 25 matrix of mode shapes obtained from a �nite element analysis (Belvin et al.

1991). In equations (46) and (47), !i denotes frequency and �i denotes a damping ratio of 0.005

for i = 1; : : : ; 25. Eigenvalues of Af are given in table I. Because the damping ratios are small, the

frequencies in radians per second are closely approximated by the imaginary parts of the eigenvalues.

Figure 5 shows an open-loop frequency response plot of the singular value bounds of the transfer

matrix Gf de�ned by the (Af ;Bf ;Cf ;Df ) system.

In 
exible structures, higher frequency modes are more di�cult to measure and compute

accurately. For the phase 0 structure, the �nite element model provided reasonably accurate natural

frequency and damping values for modes below 2 Hz. However, higher frequency modes, beginning

with the 10th mode at 2.301 Hz, are not accurately known (Lim and Balas 1992). In this design,

only modes with frequencies up to 14 rad/sec are used to form the compensator design model, and

modes with higher frequencies are used to represent unmodeled dynamics. Therefore, modes above

mode 9 are truncated from the 25-mode model and are accounted for as an additive uncertainty in

the design process. The matrix Gf now appears as in equation (1) with

G
�
= Gf = G +�G (48)

G = C(sI
18
�A)�1B+D (49)

and

�G = Ct(sI32�At)
�1Bt+Dt (50)

The realizations (A;B;C;D) and (At;Bt;Ct;Dt) are obtained by collecting and rearranging

appropriate rows and columns of (Af ;Bf ;Cf ;Df ). Numerical data for G and �G are given in

appendix C, and �gure 6 shows individual frequency response plots for G and �G.

Design Objectives

The objective of the control system design is to increase the damping of all the pseudo rigid-body

and structural modes of the design model G. The designs must also possess stability robustness with

respect to unmodeled structural modes, of which �G from equation (50) is taken as a representative

sample, and, if possible, possess stability robustness to parametric uncertainties such as errors

expected in frequency, damping, and mode shapes in the design model.

Loop-Shaping Procedures

By using the numerical data for the 18th-order system (A, B, C, D) found in appendix C, the

construction given by equations (A18) to (A22) leads to a state-variable realization for [ eN; fM] with

a Hurwitz system matrix. Computing the Hankel norm of [ eN;fM], as outlined in appendix A, gives

k [ eN;fM] kH = 0:8972, whereby, from equation (22), �max = 0:4417 and 

min

= 1=�max = 2:264:

An optimal compensator (using eq. (B16) with r = 1) and a central suboptimal compensator (using

eq. (B28) with � = 0:9�max) were obtained following the algorithms in appendix B. Frequency
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response plots for the compensators are shown in �gure 7. Both compensators, when applied to G

in the feedback fashion of �gure 2, enhanced the stability of G but grossly violated the condition

stated in inequality (40) with �G given by equation (50). Violation of inequality (40) indicates that

the compensator

u(s) = K(s) y(s) (51)

applied to G�, given by equation (48), has the potential of a destabilizing spillover e�ect (Joshi

1989) on the �G dynamics. The failure to satisfy the condition in inequality (40) was primarily

caused by the lack of free parameters for adjustment in the algorithms and the fact that G(s) is not

strictly proper, in which case both optimal and suboptimal compensators will not be strictly proper

as can be seen from �gure 7.

The spillover problem could be resolved through incorporation of loop-shaping functions of the

form given in equation (33). The weighting functions employed were

W1(s) = I8 (52)

and

W2(s) =W(s) = f(s) I8 (53)

where the scalar function f(s) is given by

f(s) = k=(s + a)i (54)

The positive real parameters a; i, and k are adjusted from observation of the condition given by

inequality (41) with the compensator in equation (34). The parameter a is chosen such that a plot

of the inverse of ��[K(I�GK)�1(j!)] versus ! 2 [0;1) breaks upward before ! = 14 rad/sec, the

approximate frequency at which the �G dynamics become predominant. The parameter i roughly

controls the slope of the upward break and was taken as i = 1 or 2. The quantity k adjusts the

magnitude of W(s) and ranges between 0.08 and 4.0 in the following discussion. Minimal-order

state-variable realizations for W(s) for i = 1 are

W =

2
4A

(1)
W

��� B
(1)
W

C
(1)
W

��� D
(1)
W

3
5 =

2
4 �aI8

��� B
(1)
W

kB
(1)
W

��� 08�8

3
5 (55)

where

B
(1)
W

=

0
BBBBBBB@

0 0 0 : : : 0 0 1

0 0 0 : : : 0 1 0
...

...
...

...
...

...

0 1 0 : : : 0 0 0

1 0 0 : : : 0 0 0

1
CCCCCCCA
8�8

(56)

and, for i = 2, are

W =

2
64
A
(2)
W

��� B
(2)
W

C
(2)
W

���
D
(2)
W

3
75 (57)

where

A
(2)
W

=

2
6664
�2aI8 �a2B

(1)
W

B
(1)
W

08�8

3
7775 (58)
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B
(2)
W =

0
@ I8

08�8

1
A (59)

C
(2)
W

=

�
08�8 kB

(1)
W

�
(60)

and

D
(2)
W = 08�8 (61)

Realizations of equations (55) to (61) were obtained from the Control System Toolbox function

entitled \tf2ss.m."

Increasing the parameter k not only moves the closed-loop eigenvalues of the controllable modes

of the design model farther into the complex left-hand plane but also increases the potential of

destabilizing spillover into the modes of At. Observing the real parts of modes 10 and 11 shows that

these modes need stability augmentation as much as modes 1 to 9. However, of the �rst 11 modes,

modes 10 and 11 are the least controllable (with mode 11 more controllable than mode 10). A

Hankel singular value analysis of the 11-mode model yields the mode numbers ordered in decreasing

controllability and/or observability as 8, 7, 3, 2/9 (tie), 6, 4, 1, 5, 11, and 10. Including modes

10 and 11 in the design model and increasing k to provide the added stability invariably produces

compensators (optimal and suboptimal) that violate conditions given in inequalites (40) and (41).

By using the methodology and weighting described herein, modes 10 and 11 will necessarily remain

relatively unchanged when stability to additive perturbations is a design requirement.

Robustness to Structured Perturbations

For modes 1 to 9 below 2 Hz, the accuracy of values of natural frequency and damping ratio are

within 1 percent and 10 percent, respectively. (See Lim and Balas 1992.) In order to evaluate

the compensators for perturbations in frequencies and damping ratios within these ranges, the

frequencies !i and damping ratios �i in the A matrix of the 9-mode design model were replaced

by perturbed values (!p)i and (�p)i given, respectively, by

(!p)i = !i + (�!)i!i (62)

and

(�p)i = �i + (��)i�i (63)

for i = 1; : : : ; 9: In equations (62) and (63), (�!)i and (��)i are random variables uniformly

distributed within [�0.01, 0.01] and [�0.1, 0.1], respectively. The new perturbed system matrix

is denoted by A�. If G(s) is given by equation (49), the transfer matrix for the perturbed system is

given by

G�(s) = C�(sI18�A�)
�1
B+D (64)

where

C� = CA
�1
A� (65)

to re
ect acceleration measurements.

With

GA(s) = W2(s) G(s) W1(s) (66)

and

G�A
(s) =W2(s) G�(s) W1(s) (67)

normalized left-coprime factors are found such that

GA(s) = (fMA)
�1 eNA (68)
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and

G�A
(s) = (fM�A

)�1 eN�A
(69)

De�ne

�P = [� eNA;��
fMA] (70)

where

�fMA = fM�A
�

fMA (71)

and

� eNA = eN�A
�

eNA (72)

If k �P k1 < �A < �A;max, the compensators also stabilize the perturbed system in addition to

stabilizing G(s).

Compensator Design

Optimal compensator. The parameters (k; i; a) in equation (54) were adjusted to meet the

design objectives. Because the optimal compensator was not strictly proper, i = 2 was found to

provide faster roll-o� and to best allow the satisfaction of conditions in inequalities (40) and (41).

A representative optimal compensator used (k; i; a) = (0.1, 2, 0.5). After scaling each channel

of G by 0.1/(s + 0.5)2, the result was �A;max = 0.6749. Figure 8 shows the scaled version

of G(s), and �gures 9 and 10 show singular value bounds for the corresponding compensators

KA(s) and K(s), respectively. Table II gives the eigenvalues of the Hurwitz system matrix from

a state-variable realization of KA(s). The order of the compensator KA is 33 (corresponding to

n = 18; n1 = 0; n2 = 16; r = 1, and i = 2), whereby the �nal compensator K is on the order of 49.

Over 2000 realizations of equations (62) and (63) were computed for the optimal compensator and

corresponding �P transfer matrices (given by eq. (70)) tested for satisfaction of k �P k1 < �A;max.

No violations were encountered. Values of k �P k1 ranged between 0.1728 and 0.5888 with a mean

of 0.4627, and the standard deviation was 0.0726. Satisfaction of conditions in inequalities (40)

and (41) is depicted in �gure 11, which indicates that mode 20 (the laser tower mode) at 41.9 rad/sec

(6.7 Hz) is the mode most likely to experience destabilizing spillover. (In this report, frequency is

expressed in radians per second or Hertz (or in both) for comparison purposes with the literature.)

This property has also been observed experimentally in previous studies. The peak value (H1 norm)

of the curve in �gure 11(b) is 0.024 at 41.9 rad/sec, which indicates an additive stability robustness

margin of about 97 percent.

This ultraconservative margin for additive stability robustness was forced by the desire to also

have a compensator that guarantees stability robustness to expected parametric uncertainties in

frequencies and damping ratios. If k is increased to 2.0 for the same values of i and a, the peak

value of the curve in the corresponding �gure 11(b) is 0.570, which indicates a more reasonable

margin of 43 percent. However, k = 2.0 produced �A;max= 0:4856, and this reduced value of �A;max

leads to the occurrence of violations greater than 40 percent of the time in the random tests for

k �P k1 < �A;max. For �xed values of i and a, decreasing k increases �A;max and decreases

k �P k1. A value of k allowing a su�ciently wide \gap" between the two quantities is required

when speci�c ranges of parametric variations are considered.

A state-variable realization (Ac;Bc;Cc;Dc) of the optimal compensator K was formed, and the

controller was applied (in the manner of �g. 2) to the 50th-order system G�. The closed-loop system

matrix appears as Acl in equation (44), but with (A, B, C, D) replaced by (Af ;Bf ;Cf ;Df ).

When comparing the imaginary parts of the eigenvalues of Acl with the imaginary parts of the

open-loop eigenvalues (given in table I), certain Acl eigenvalues can be identi�ed as the closed-loop

modi�cations of the eigenvalues of Af . These eigenvalues and corresponding damping ratios (which

are correlated with open-loop mode numbers) are given in table III. The compensator leaves the
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open-loop eigenvalues essentially unchanged except for modes 1 to 3. Optimal compensators with

better stability augmentation can be obtained at the expense of violations in robust stability because

of parametric variations in frequencies and damping ratios of the design model.

Suboptimal compensators. Suboptimal compensators computed from strictly proper systems

GA(s) are strictly proper, whereby lower order weighting functions (other than those used in

the foregoing optimal compensator studies) can be employed without di�culty in satisfying the

additive robustness conditions. Suboptimal compensator studies were performed using i = 1 and

�A = 0:9�A;max from which a representative result had (k; i; a) = (0:5; 1; 0:1). After scaling each

channel of G by 0:5=(s + 0:1), the result was found to be �A;max = 0:667: Figure 12 shows

the scaled version of G, and �gures 13 and 14 show singular value bounds for the compensators

KA(s) and K(s), respectively. Table IV gives the eigenvalues of the Hurwitz system matrix from

a state variable realization of KA(s). The order of the compensator KA is 26 (corresponding to

n = 18; n1 = 0; n2 = 8; and i = 1), whereby the order of the �nal compensator K is 34.

Again, over 2000 realizations of equations (62) and (63) were computed for the suboptimal

compensator and the corresponding �P transfer matrices tested for satisfaction of k �P k1 <

�A;max with no violations encountered. Values of k �P k1 ranged between 0.0561 and 0.5595 with

a mean of 0.2798 and a standard deviation of 0.0907. The expected variations in frequency and

damping ratio of 1 percent and 10 percent, respectively, are apparently close to the upper bounds

for robust stability for k = 0:5: Increasing these variations to 1.5 percent and 15 percent causes

violations about 6 percent of the time.

Satisfaction of conditions in inequalities (40) and (41) is shown in �gure 15. An interesting note

is that �gure 15(a) indicates that mode 20 (the same mode as that indicated by �g. 11) is the mode

most likely to be troublesome, whereas �gure 15(b) 
ags mode 15 at 27.6 rad/sec. The peak value

of the curve in �gure 15(b) is 0.562, which indicates an additive stability robustness margin of about

44 percent.

The suboptimal compensator was also applied to the control of the 50th-order system G�, and

an eigenvalue analysis was performed on the resulting Acl matrix. The results are given in table V.

The fact that the real parts of the eigenvalues for modes 10 to 25 are not signi�cantly changed from

the corresponding values of table I indicates that the additive robustness conditions are satis�ed.

Modes 3 to 9 all have enhanced stability except for possibly mode 5. The eigenvalue data give two

eigenvalues with imaginary parts close to the imaginary part of open-loop mode 5. Both are shown

in table V. The entry with the largest real part is possibly the closed-loop eigenvalue of mode 5

because this mode is the least controllable and observable of the �rst nine modes. No correlation

could be made for modes 1 and 2.

For comparative purposes, a calculation was performed with (k; i; a) = (0:5; 1; 0:1) and �A = 0.

Compensator equations for this calculation are given by the 
 ! 1 case found at the end of

appendix B. Figures 16 to 18 and tables VI and VII provide the same information as previously

provided for the optimal and other suboptimal compensators. Figure 18 indicates that robustness to

additive perturbations measured by conditions in inequalities (40) and (41) is somewhat improved.

The peak value of the curve in �gure 18(b) is 0.184 at 27.6 rad/sec with a robustness stability margin

of about 81 percent.

For �xed values of the parameters (k; i; a) as �A increased from 0 toward �A;max within the

suboptimal structure, the magnitudes of the imaginary parts of the eigenvalues of a state-variable

realization of KA(s) generally decreased, whereas the magnitudes of the real parts generally

increased. Thus, for small values of �A, a relatively slower compensator was produced ; this caused

smaller values on the left side of inequality (41) which, in turn, created larger values of additive

robustness stability margin.
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Evaluation model simulations. The four compensators discussed were applied to the control

of the full 86-mode-evaluation phase 0 model subjected to a transient input disturbance. Although

not directly considered in the robust stability design process , this application gave an indication

of the relative merit of the compensators in the area of closed-loop performance. The simulation

consisted of (1) applying an excitation input sequence for the �rst 9 sec, (2) allowing 1 sec of free

decay, and then (3) applying a controller at the 10-sec mark for a total duration of 30 sec. The

input sequence consisted of harmonic forces designed to excite two pendulum modes (1 and 3) and

the �rst two bending modes (7 and 8) using a single actuator for each mode. Speci�cally, actuators

1 (mode 7), 2 (mode 8), 6 (mode 3), and 7 (mode 1) were excited with signals of 1.474 Hz, 1.738 Hz,

0.155 Hz, and 0.147 Hz, respectively. No actuator dynamics were considered.

The compensators were discretized at a sampling rate of 133 Hz. The input sequence and

sampling rate are the same as those employed by Lim, Maghami, and Joshi (1992) in their

experimental investigation using the actual phase 0 structure. The format for the presentation

of the results herein parallels that of the experimental study. Figures 19 to 34 show input and

output responses for collocated thrusters and accelerometers 7 and 8 (laser tower) for the optimal

and suboptimal controllers. The best performance is obtained by the suboptimal compensator with

�A;max = 0:667 followed closely by the suboptimal compensator with �A = 0: The optimal (2.0, 2,

0.5) compensator had marginal performance characteristics, and the highly conservative robust (0.1,

2, 0.5) compensator had almost no e�ect. The suboptimal responses compare favorably with those

of Lim et al. which were designed with performance issues in mind.

Concluding Remarks

In this report the application of a robust stabilization methodology to the control of a simulated

model of an actual laboratory apparatus has been considered. The apparatus, known as the Control-

Structures Interaction (CSI) Phase 0 Evolutionary Model, was built at the Langley Research Center

for the purpose of investigating some of the problems and solution approaches involved in the control

of 
exible space structures.

With the view that system uncertainties are perturbations about a nominal design model, a single

robustly stabilizing compensator was sought that not only enhanced the stability of the nominal

plant but, in addition, stabilized all systems within some neighborhood of the plant generated

by the perturbations. The computation of the largest neighborhood around a given design plant

for which a single controller produces closed-loop stability was shown to be formulated as an

H1 control problem. Several formulations of the H1 problem were possible depending on the

character of the perturbation space. A formulation based on the Glover-McFarlane theory (1989)

was employed wherein descriptions of the normalized coprime factor plant were used and the plant

perturbations were de�ned as additive modi�cations to the coprime factors. An attractive feature

of the normalized coprime factorization approach is that it leads to a closed-form expression for

the maximum perturbation radius. The maximum radius can be directly computed in terms of the

open-loop design model, thus allowing optimal and suboptimal robust compensators to be found

without the usual 
 iteration of the H1 design.

Computational algorithms for both the optimal and suboptimal versions of the McFarlane-Glover

theory (1990) were summarized, and representative compensators were computed and analyzed

for the control of the simulated Langley phase 0 structure. Through incorporation of weighting

functions, the compensators were made to roll o� in such a way as to cause the closed-loop system

to be robust to additive unmodeled dynamics. A Monte Carlo approach was employed to test the

robust stability of the compensators against expected structured parametric perturbations in the

compensator design model. Even though these calculations o�er no mathematical proof, they do

give a degree of con�dence that the compensators robustly stabilize the nominal system for expected

perturbations in frequencies and damping ratios of the system matrix of the design model. The

compensators were tested through application to a full-order evaluation model.
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Results from the study indicate that when requiring the compensators to satisfy all design ob-

jectives of stability augmentation, robust stability to unmodeled dynamics appearing as additive

perturbations, and robustness to structured parametric variations, the optimal robust compensators

can be overly conservative with marginal stability augmentation, whereas the suboptimal compen-

sators are not. For the class of 
exible structure applications considered, the suboptimal version

of the McFarlane-Glover theory provides a viable approach for the computation of low-authority

controllers providing robust stability augmentation for variations in design model parameters and

additive unmodeled dynamics. These controllers may need to be supplemented with high-authority

loops to provide additional performance.

NASA Langley Research Center

Hampton, VA 23681-0001

March 29, 1993
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Appendix A

Nomenclature and De�nitions

This appendix o�ers a compilation of certain fundamental results from linear systems theory that
are employed in the body of this report.

State-Variable and Transfer Matrix Representations

Assume that a dynamic system is modeled by a real , linear, �nite-dimensional, time-invariant,
continuous set of ordinary di�erential equations written in vector-matrix form as

_x(t) = A x(t) +B u(t) (A1)

y(t) = C x(t) +D u(t) (A2)

where, for t 2 [0;1),

x(t) 2 Rn state vector

y(t) 2 Rp output vector

u(t) 2 Rm control vector

A 2 Rn�n system matrix

B 2 Rn�m control-e�ectiveness matrix

C 2 Rp�n output matrix

D 2 Rp�m control-feedthrough matrix

The transfer p�m function matrix (G(s)) for the (A, B, C, D) system is given for s 2 C by

G(s) = C(sI�A)�1B+D :=

2
4A

��� B

C

��� D

3
5 (A3)

If D is square and nonsingular,

G�1(s) =

2
4
A�BD�1C

��� BD�1

�D�1C

��� D�1

3
5 (A4)

If

G1 =

2
4A1

��� B1

C1

��� D1

3
5

G2 =

2
4A2

��� B2

C2

��� D2

3
5

then state-variable realizations (not necessarily minimal) for the cascaded system G1G2 are
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G1G2 =

2
664
A1 B1C2

��� B1D2

0 A2

��� B2

C1 D1C2

��� D1D2

3
775

=

2
664

A2 0

��� B2

B1C2 A1

��� B1D2

D1 C2C1

��� D1D2

3
775 (A5)

where 0 represents a null matrix of appropriate size.

When A is Hurwitz, that is, has eigenvalues only in the open, complex left half-plane, the
reachability gramian (P) and the observability gramian (Q) are given (Kwakernaak and Sivan 1972)
as the unique symmetric nonnegative de�nite solutions to the Lyapunov equations

AP +PAT +BBT = 0 (A6)

ATQ+QA+CTC = 0 (A7)

If (A, B) and (C, A) are, respectively, completely controllable and completely observable, then P
and Q are symmetric and positive de�nite.

Denote the ith eigenvalue of a square matrix E by �i(E). When Re[�i(A)] < 0 for i = 1; 2; : : : ; n,
the Hankel singular values of the transfer function matrix G(s) are de�ned as (Glover 1984)

�i[G(s)] = f�i(PQ)g1=2 (A8)

where P and Q satisfy equations (A6) and (A7), respectively, and, by convention,

�i[G(s)] � �i+1[G(s)] (A9)

for i = 1; 2; : : : ; n � 1. The Hankel norm of G(s), denoted by k G kH, is de�ned as

k G kH = �1[G(s)] (A10)

which is the largest Hankel singular value of G(s). The eigenvalues of the product PQ are invariant
under coordinate transformations on x(t) in equations (A1) and (A2). When A is Hurwitz, a
particular coordinate transformation called a balancing transformation exists (Moore 1981) such
that

P = Q = diag(�1; �2; : : : ; �n) (A11)

Computational aspects of balancing transformations are discussed in Laub et al. (1987), and
applications to model-order reduction are surveyed in Anderson and Liu (1989).

Let RL1 denote the space of all real-rational proper transfer function matrices that have no
poles on the imaginary (s = j!) axis of the complex plane and RH1 � RL1 denote the subset of
all asymptotically stable (no poles in the closed right half-plane) proper transfer function matrices.
With G(s) 2 RH1, the H1 norm of G(s) is

k G k1 =
sup

! 2 R
��[G(j!)] (A12)

where �� denotes the largest singular value (not the Hankel singular value) of the complex matrix
G(j!) for a given real !. For a discussion of matrix singular values and their applications in linear
systems theory, see Golub and Van Loan (1989) and Klema and Laub (1980). Computational aspects
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of H1 norms are discussed in Boyd, Balakrishnan, and Kabamba (1989) and Boyd and Balakrishnan
(1990).

Coprime Factor Representations

In addition to state-variable and transfer-function matrix representations, all time-invariant linear

systems have coprime factor representations (Vidyasagar 1985). Suppose that fM 2 RH1 andeN 2 RH1 have the same number of rows. Then fM and eN are left coprime if, and only if, eU�RH1
and eV�RH1 exist such that fM(s) eV(s) + eN(s) eU(s) = Ip (A13)

for all s 2 C. Equivalently, fM and eN are left coprime if, and only if, [ eN;fM] has a right inverse
in RH1. Any (stable or not) transfer function matrix G(s) can be represented in terms of a pair
of asymptotically stable, real-rational, proper transfer function matrices that are left coprime. This
representation, termed a left-coprime factori zation of G(s), is given by

G(s) = fM(s)�1 eN(s) (A14)

where fM 2 RH
1

is square with det(fM) 6= 0, and eN 2 RH
1

and fM are left coprime. A particular
left-coprime factorization, called a normalized left-coprime factorization ( NLCF), is one in which

eN(s) eN�(s) + fM(s) fM�(s) = Ip (A15)

for all s 2 C where eN�(s) = eNT(�s) (A16)

fM�(s) = fMT(�s) (A17)

A state-variable realization for a normalized left-coprime factorization can be formed from a minimal
(A, B, C, D) realization of G(s) (Vidyasagar 1988). First, solve the generalized �lter algebraic
Riccati equation (GFARE)

(A�BS�1DTC)Z+Z(A�BS�1DTC)T � ZCTR�1CZ+BS�1BT = 0 (A18)

for the unique symmetric positive de�nite matrix Z where

S = Im+DTD (A19)

R = Ip +DD
T (A20)

Then, with

H = �(ZCT +BDT)R�1 (A21)

and

[ eN fM] =

2
664A+HC

��� B+HD H

R�1=2C

���
R�1=2D R�1=2

3
775 (A22)

eN and fM form a normalized left-coprime factorization of G(s) constructed as in equation (A14).

Similar to left-coprime factorizations, all rational transfer matrices also have right-coprime
factorizations (Vidyasagar 1985). Suppose thatM 2 RH

1
and N 2 RH

1
have the same number of

columns. Then, M and N are de�ned to be right coprime if, and only if, U 2 RH
1

and V 2 RH
1

exist such that

V(s)M(s) +U(s)N(s) = Im (A23)
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for all s 2 C. That is, the matrix

�
N

M

�
has a left inverse in RH1. The transfer matrix G(s) is said

to have a right-coprime factorization when

G(s) = NM�1 (A24)

whereM 2 RH
1

is square with det(M) 6= 0, and N 2 RH
1

andM are right coprime. A particular
right-coprime factorization, called a normalized right-coprime factorization ( NRCF), is one in which

M
�(s) M(s) +N�(s) N(s) = Im (A25)

for s 2 C, where N� and M� are as de�ned by equations (A16) and (A17), respectively. For a
minimal (A, B, C, D) realization of G(s), a state-variable realization for an NRCF of G(s) is given
by

�
N

M

�
=

2
6664
A+BF

��� BS
�1=2

C+DF
��� DS

�1=2

F

��� S
�1=2

3
7775 (A26)

where S and R are given by equations (A19) and (A20), respectively,

F = �S�1(DTC+BTX) (A27)

and X is the unique symmetric positive de�nite solution of the generalized control algebraic Riccati
equation (GCARE)

(A�BS�1DTC)TX+X(A�BS�1DTC)�XBS�1BTX+CTR�1C = 0 (A28)

Both the NLCF and NRCF realizations are minimal given a minimal (A, B, C, D) realization
(Meyer 1988).
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Appendix B

Algorithms for the NLCF Robust Stabilization Problems

In this section, computational procedures are presented for determining state-variable realizations
of the compensators resulting from the optimal (
 = 
min) and suboptimal (
 > 
min) NLCF robust
stabilization problems.

Optimal Compensator

From equation (23), construction of the optimal compensator involves the approximation of a

function [� eN;fM] 2 RH1 by a completely unstable (all poles in the open complex right half-plane)

rational transfer function

�
U

V

�
�

. This type of problem is referred to as a Nehari extension problem.

Its solution, as has been shown in section 6 of Glover (1984), can be constructed through the use of
balanced realizations and Hankel norm approximations. In this paper, the version of Glover 's theory
found in section 6.6.2 of Maciejowski (1989) is employed.

If G is a p�m matrix, then [� eN;fM] will be p�(p+m). Place an m�(p+m) null matrix beneath

[� eN;fM] such that the resulting augmented square matrix is of size ~n = m + p. A state-variable
realization for the augmented matrix can be found through the use of equations (A18) to (A22).
The realization will have a system matrix with the same size as the system of a minimum realization

of G, which is denoted by n. Let ( eA; eB; eC; eD) be a balanced realization of the augmented matrix
realization. The balanced realization will be such that

eA�+� eAT + eBeBT = 0 (B1)

and eAT�+� eA+ eCT eC = 0 (B2)

where

� =

�
�1Ir 0

0 �1

�
(B3)

�1 = diag(�r+1; �r+2; : : : ; �n) (B4)

and r � 1 is the multiplicity of �1. In equations (B3) and (B4), the Hankel singular values of

[� eN;fM] are ordered such that

�i � �i+1 (i = 1; 2; : : : ; n� 1)

and
�1 =k [� eN;fM] kH = k [ eN;fM] kH (B5)

Unique solutions to equations (B1) and (B2) exist because eA is Hurwitz.

Next, partition eA; eB, and eC conformally with � to obtain

eA =

" eA11
eA12eA21
eA22

#
(B6)

eB =

" eB1eB2

#
(B7)

and eC = [ eC1;
eC2] (B8)

De�ne
� = �1 � �1In�r (B9)

21



and �nd bU such that bU bUT = I~n and eB1 = � eCT1 bU (B10)

The matrix bU may be found as follows. Let eCT
1

have singular value decomposition U1
b�VT

1
.

From equations (B1), (B2), and the construction of �, we have eB1
eBT
1
= eCT

1
eC1, whereby U1

b�VT

2

is a singular value decomposition of �eB1. Then, a solution of equation (B10) is

bU = V1V
T

2 (B11)

Thereafter, construct bA = ��1(�21
eAT

22+�1
eA22�1 � �1

eCT2 bUeBT2 ) (B12)

bB = ��1(�1
eB2+ �1

eCT2 bU) (B13)

bC = � eC2�1� �1
bUeBT2 (B14)

bD = � eD+ �1
bU (B15)

Glover (1984) shows that after deleting the lower m rows of bC and bD (corresponding to

those initially added), a state-variable realization for

�
U

V

�
�

in equation (23) is ( bA; bB; bC; bD).

Applying the de�nition in equation (A16) indicates that the corresponding realization for

�
U

V

�
is (� bAT

;� bCT ; bBT ; bDT ). In other words,

�
U

V

�
= �bBT (sIn�r + bAT)�1bCT + bDT (B16)

where bAT
2 R

(n�r)�(n�r)

bBT 2 R
(p+m)�(n�r)

bCT 2 R
(n�r)�p

and bD 2 R
(p+m)�p

The matrices U and V are the upper m�p and lower p�p portions of equation (B16), respectively.
The optimal compensator K is given by equation (19) for which a state-variable realization can be
constructed through application of equations (A4) and (A5).

The system matrix corresponding to a state-variable realization of K will be on the order of

(n� r), where r is the multiplicity of the largest singular value of [ eN;fM]. Here, n is the order of a

minimal realization of [ eN;fM] and also the order of a minimal realization of G. Thus, the optimal
compensator is of a lower order than G. However, even if G is strictly proper, the compensator will
generally only be proper. (See eq. (B15).) If a strictly proper compensator is desired for a strictly
proper G, the suboptimal compensator may be employed.

Suboptimal Compensator

Utilization of the compensator from the previous section always yields

k

�
K

I

�
(I�GK)�1fM�1

k1 = �
�1
max = 
min (B17)
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If one wishes to specify that 
 > 
min such that

k

�
K

I

�
(I�GK)�1fM�1 k1 � 
 (B18)

a suboptimal version of the optimal NLCF robust stabilization problem can be posed as �nding all
compensators that simultaneously stabilize G and satisfy equation (B18).

Let G have state-variable realization (A, B, C, D) and Z and X denote the solutions of
equations (A18) and (A28), respectively. Also let

S = Im+DT
D (B19)

F = �S�1(BTX+DTC) (B20)

and

A
c = A+BF (B21)

Then, as shown in Glover and McFarlane (1989) or McFarlane and Glover (1990), all controllers
satisfying the suboptimal robust stabilization problem for selected


 > 
min= (1� k [ eN; eM] k2H)
�1=2 (B22)

are given by

K = (L11b�+L12)(L21b�+ L22)
�1 (B23)

where 2
6664
L11 L12

L21 L22

3
7775 =

2
6666664

A
c

��� �
2cW�T
1
BS
�1=2 
2�̂�TZCTR�1=2

F

��� S
�1=2 ��1DTR�1=2

C+DF
��� DS

�1=2 ���1R�1=2

3
7777775

(B24)

R = Ip +DD
T (B25)

� = (
2 � 1)1=2 (B26)

cW1 = In+ (XZ� 
2In) (B27)

and b� is arbitrary in RH1 so long as k b� k1 � 1.

The central ( b� = 0), or lowest order, suboptimal compensator is

Kc =

2
4Ac + 
2cW�T

1
ZC

T(C+DF)
��� 
2cW�T

1
ZC

T

B
T
X

��� �DT

3
5 (B28)

Comparing the orders of the optimal and central suboptimal controllers shows that the central
controller always has an order equal to that of the original design model (G), whereas the order of
an optimal compensator is n� r(r � 1). The central controller gives a strictly proper compensator
for a strictly proper G, whereas the optimal compensator typically does not.

McFarlane and Glover (1990) show that

1� 
2
min

= ��max(ZX) (B29)
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whereby cW1 of equation (B27) becomes singular as 
 ! 

min

. As 
 ! 1, the central solution

approaches 2
4Ac

� ZC
T
(C +DF)

��� �ZCT

B
T
X

��� �D
T

3
5

which is easily recognized as a Linear-Quadratic-Gaussian (LQG) compensator construction.
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Appendix C

Numerical Data

Matrices De�ning Controller Design Model

Numerical data forG = C(sI18�A)�1B+D for equation (49) are given in the following matrices

for (A, B, C, D).

A =

Columns 1 through 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

�8.5437E�01 0 0 0 0 0
0 �8.7713E�01 0 0 0 0
0 0 �9.5105E�01 0 0 0
0 0 0 �2.1042E+01 0 0
0 0 0 0 �2.2077E+01 0
0 0 0 0 0 �3.0155E+01
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 12
0 0 0 1.0000E+00 0 0
0 0 0 0 1.0000E+00 0
0 0 0 0 0 1.0000E+00
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 �9.2432E�03 0 0
0 0 0 0 �9.3655E�03 0
0 0 0 0 0 �9.7522E�03
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

�8.5712E+01 0 0 0 0 0
0 �1.1927E+02 0 0 0 0
0 0 �1.3997E+02 0 0 0
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A =

Columns 13 through 18
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

1.0000E+00 0 0 0 0 0

0 1.0000E+00 0 0 0 0

0 0 1.0000E+00 0 0 0
0 0 0 1.0000E+00 0 0

0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.0000E+00

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
�4.5872E�02 0 0 0 0 0

0 �4.6986E�02 0 0 0 0

0 0 �5.4914E�02 0 0 0

0 0 0 �9.2581E�02 0 0

0 0 0 0 �1.0921E�01 0
0 0 0 0 0 �1.1831E�01
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B =

Columns 1 through 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�9.0412E�02 �1.7503E�03 �2.2032E�03 8.6983E�04 7.2204E�01 7.6707E�02

�7.2842E�01 2.1216E�04 �7.4012E�01 1.9792E�04 2.8522E�03 �7.0804E�01

1.1157E+00 �2.6799E�04 6.2103E�02 9.7330E�05 5.9780E�02 �8.8555E�01

�2.3142E�04 �1.1076E+00 �1.5399E�04 �3.9490E�02 �8.7477E�02 2.3484E�04

5.9439E�05 �7.5943E�01 1.9928E�04 �7.4550E�01 �3.0950E�03 �3.4298E�04

�6.8777E�02 2.3805E�03 �2.5082E�01 2.0583E�03 8.2306E�04 3.0302E�01

�9.0841E�01 �9.2293E�04 4.7562E�01 4.0256E�03 9.0757E�04 �4.3450E�01

2.9426E�02 1.2695E+00 �2.6966E�02 �1.0421E+00 �3.8239E�01 1.0193E�02

9.4147E�01 �4.7622E�02 �9.0573E�01 4.2744E�02 1.2593E�02 3.8921E�01

Columns 7 through 8

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

7.2043E�01 �4.6856E�02

2.8556E�03 �6.2905E�01

5.9586E�02 5.9095E�01

�2.7368E�01 1.0451E�03

3.9825E�03 �1.1842E�03

5.0834E�04 1.3185E+00

�7.0441E�03 1.1182E+00

9.5012E�01 1.6953E�02

�2.2581E�02 3.1281E�01
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C =

Columns 1 through 6

7.7245E�02 6.3892E�01 �1.0611E+00 4.8696E�03 �1.3122E�03 2.0740E+00

1.4954E�03 �1.8609E�04 2.5487E�04 2.3307E+01 1.6766E+01 �7.1785E�02

1.8823E�03 6.4918E�01 �5.9063E�02 3.2403E�03 �4.3995E�03 7.5636E+00

�7.4315E�04 �1.7360E�04 �9.2566E�05 8.3096E�01 1.6458E+01 �6.2069E�02

�6.1689E�01 �2.5017E�03 �5.6854E�02 1.8407E+00 6.8328E�02 �2.4820E�02

�6.5536E�02 6.2104E�01 8.4221E�01 �4.9416E�03 7.5719E�03 �9.1377E+00

�6.1551E�01 �2.5047E�03 �5.6670E�02 5.7589E+00 �8.7921E�02 �1.5329E�02

4.0032E�02 5.5176E�01 �5.6203E�01 �2.1991E�02 2.6143E�02 �3.9760E+01

Columns 7 through 12

7.7862E+01 �3.5096E+00 �1.3178E+02 8.3570E�04 6.8220E�03 �1.0881E�02

7.9107E�02 �1.5141E+02 6.6658E+00 1.6178E�05 �1.9870E�06 2.6135E�06

�4.0767E+01 3.2162E+00 1.2678E+02 2.0365E�05 6.9316E�03 �6.0564E�04

�3.4504E�01 1.2429E+02 �5.9830E+00 �8.0400E�06 �1.8536E�06 �9.4918E�07

�7.7790E�02 4.5607E+01 �1.7627E+00 �6.6740E�03 �2.6712E�05 �5.8299E�04

3.7242E+01 �1.2157E+00 �5.4479E+01 �7.0902E�04 6.6311E�03 8.6361E�03

6.0377E�01 �1.1332E+02 3.1607E+00 �6.6591E�03 �2.6744E�05 �5.8109E�04

�9.5844E+01 �2.0220E+00 �4.3785E+01 4.3310E�04 5.8914E�03 �5.7631E�03

Columns 13 through 18

1.0616E�05 �2.7928E�06 3.7768E�03 8.4102E�02 �3.2136E�03 �1.1139E�01

5.0808E�02 3.5683E�02 �1.3072E�04 8.5446E�05 �1.3864E�01 5.6342E�03

7.0638E�06 �9.3634E�06 1.3774E�02 �4.4033E�02 2.9450E�03 1.0716E�01

1.8115E�03 3.5028E�02 �1.1303E�04 �3.7269E�04 1.1381E�01 �5.0570E�03

4.0127E�03 1.4542E�04 �4.5198E�05 �8.4024E�05 4.1761E�02 �1.4899E�03

�1.0773E�05 1.6115E�05 �1.6640E�02 4.0226E�02 �1.1132E�03 �4.6047E�02

1.2554E�02 �1.8712E�04 �2.7915E�05 6.5215E�04 �1.0376E�01 2.6716E�03

�4.7941E�05 5.5641E�05 �7.2404E�02 �1.0352E�01 �1.8514E�03 �3.7009E�02

D =

Columns 1 through 6

3.5007E+00 �6.8878E�03 �6.5971E�01 5.6295E�03 �9.1940E�04 2.6140E�01

�6.8878E�03 3.4174E+00 7.7127E�03 �7.1509E�01 �3.8808E�01 �4.5194E�03

�6.5971E�01 7.7127E�03 1.6618E+00 �9.4997E�03 �8.4551E�04 �1.6658E�01

5.6295E�03 �7.1509E�01 �9.4997E�03 1.6452E+00 4.0543E�01 4.9757E�03

�9.1940E�04 �3.8808E�01 �8.4551E�04 4.0543E�01 6.7897E�01 1.2671E�03

2.6140E�01 �4.5194E�03 �1.6658E�01 4.9757E�03 1.2671E�03 1.7236E+00

1.2391E�02 1.5061E+00 �8.6038E�03 �9.8264E�01 1.8407E�01 4.5186E�03

3.1031E�01 8.2638E�03 4.1973E�01 3.6531E�03 �8.3024E�04 �4.5921E�02

Columns 7 through 8

1.2391E�02 3.1031E�01

1.5061E+00 8.2638E�03

�8.6038E�03 4.1973E�01

�9.8264E�01 3.6531E�03

1.8407E�01 �8.3024E�04

4.5186E�03 �4.5921E�02

1.5008E+00 1.2062E�03

1.2062E�03 3.8341E+00
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Matrices De�ning Truncated System

Numerical data for �G = Ct(sI32 �At)
�1Bt +Dt for equation (50) are given in the following

matrices for (At;Bt;Ct;Dt).

At =

Columns 1 through 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

�2.0909E+02 0 0 0 0 0
0 �3.1809E+02 0 0 0 0
0 0 �6.3630E+02 0 0 0
0 0 0 �6.4186E+02 0 0
0 0 0 0 �6.9828E+02 0
0 0 0 0 0 �7.6148E+02
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Columns 7 through 12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�1.1948E+03 0 0 0 0 0

0 �1.5075E+03 0 0 0 0

0 0 �1.5326E+03 0 0 0

0 0 0 �1.6531E+03 0 0

0 0 0 0 �1.7563E+03 0

0 0 0 0 0 �2.1457E+03

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

30



Columns 13 through 18
0 0 0 0 1.0000E+00 0
0 0 0 0 0 1.0000E+00

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �1.4460E�01 0
0 0 0 0 0 �1.7835E�01

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

�2.7152E+03 0 0 0 0 0

0 �3.1739E+03 0 0 0 0

0 0 �6.1546E+03 0 0 0

0 0 0 �1.1213E+04 0 0
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Columns 19 through 24
0 0 0 0 0 0
0 0 0 0 0 0

1.0000E+00 0 0 0 0 0

0 1.0000E+00 0 0 0 0

0 0 1.0000E+00 0 0 0

0 0 0 1.0000E+00 0 0
0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.0000E+00

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

�2.5225E�01 0 0 0 0 0

0 �2.5335E�01 0 0 0 0

0 0 �2.6425E�01 0 0 0

0 0 0 �2.7595E�01 0 0
0 0 0 0 �3.4566E�01 0

0 0 0 0 0 �3.8827E�01

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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Columns 25 through 30
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

1.0000E+00 0 0 0 0 0

0 1.0000E+00 0 0 0 0

0 0 1.0000E+00 0 0 0
0 0 0 1.0000E+00 0 0

0 0 0 0 1.0000E+00 0

0 0 0 0 0 1.0000E+00

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

�3.9149E�01 0 0 0 0 0

0 �4.0658E�01 0 0 0 0

0 0 �4.1908E�01 0 0 0
0 0 0 �4.6322E�01 0 0

0 0 0 0 �5.2108E�01 0

0 0 0 0 0 �5.6337E�01

0 0 0 0 0 0

0 0 0 0 0 0
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Columns 31 through 32
0 0
0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

1.0000E+00 0

0 1.0000E+00

0 0
0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

�7.8451E�01 0

0 �1.0589E+00
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Bt =

Columns 1 through 6
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

�1.7116E�01 �5.8049E�03 2.0869E�01 3.2349E�03 �1.0585E�03 1.0457E�01
�2.9829E�03 �3.5789E�01 �1.2875E�03 2.5253E�01 �3.8650E�02 �3.3579E�03

�2.0542E�01 �7.2812E�02 �9.5226E�03 7.2871E�03 �5.5209E�02 6.7861E�02

�8.3452E�01 �1.7241E�02 �4.2512E�02 �2.1983E�02 �2.8225E�03 2.8268E�01

�2.7311E�01 �1.0499E�01 �4.2532E�02 �5.3459E�03 �5.4968E�02 1.0531E�01

8.3909E�02 �1.0430E+00 �4.9171E�03 �6.5816E�02 �4.8285E�01 �3.5314E�02
3.0662E�01 �4.5815E�02 4.1271E�01 �1.2829E�02 6.0601E�03 �8.9994E�02

1.5476E�02 �5.8067E�01 �3.6281E�02 �3.9609E�01 �1.8812E�01 �3.4468E�02

1.1892E�01 �3.9154E�02 3.6029E�01 �9.2921E�02 2.3797E�02 3.5179E�01

�2.0457E�02 3.3652E�01 1.9963E�01 2.5025E�02 �1.8725E�02 �2.1458E�01

�6.8681E�02 1.0751E+00 �1.2244E�01 �1.4175E�01 6.5808E�02 3.4202E�02

5.4524E�03 5.4087E�01 1.5533E�01 1.0847E+00 �6.6816E�01 2.2399E�02
�2.0571E�01 2.7394E�02 �9.8462E�01 1.0100E�01 �4.6903E�02 4.6728E�02

�1.5396E+00 �1.0585E�01 �1.7445E�01 �6.0191E�03 �1.5392E�03 �1.2358E�03

�1.0503E�02 1.9177E�01 3.6153E�02 6.2227E�01 4.0364E�01 5.9594E�03

1.7533E�01 1.5125E�01 1.1805E�01 7.5504E�01 �2.2316E�02 2.6324E�02
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Columns 7 through 8

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

�7.9081E�03 �2.1884E�01

�2.0767E�01 3.3597E�03

�4.1550E�02 1.1263E�01

�5.3852E�02 4.5806E�01

�6.0046E�02 1.5792E�01

�4.0749E�01 �4.2931E�02

1.0370E�02 �5.1029E�01

1.6912E�01 8.8657E�02

�1.0616E�01 �1.1353E+00

�5.2492E�01 �1.2112E+00

�2.2117E+00 3.0859E�01

5.2024E�01 5.3702E�02

1.0856E�01 �3.1874E�01

1.1115E�01 �2.4079E�01

3.7390E�01 1.3817E�02

1.0209E�01 �7.8110E�03
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Ct =

Columns 1 through 6

3.5788E+01 9.4882E�01 1.3071E+02 5.3565E+02 1.9071E+02 �6.3895E+01

1.2138E+00 1.1384E+02 4.6330E+01 1.1066E+01 7.3312E+01 7.9423E+02

�4.3635E+01 4.0954E�01 6.0592E+00 2.7287E+01 2.9699E+01 3.7443E+00

�6.7639E�01 �8.0327E+01 �4.6368E+00 1.4110E+01 3.7329E+00 5.0118E+01

2.2132E�01 1.2294E+01 3.5130E+01 1.8117E+00 3.8383E+01 3.6768E+02

�2.1865E+01 1.0681E+00 �4.3180E+01 �1.8144E+02 �7.3536E+01 2.6891E+01

1.6535E+00 6.6057E+01 2.6438E+01 3.4566E+01 4.1929E+01 3.1030E+02

4.5758E+01 �1.0687E+00 �7.1667E+01 �2.9401E+02 �1.1027E+02 3.2691E+01

Columns 7 through 12

�3.6635E+02 �2.3331E+01 �1.8226E+02 3.3817E+01 1.2062E+02 �1.1699E+01

5.4740E+01 8.7538E+02 6.0009E+01 �5.5629E+02 �1.8882E+03 �1.1606E+03

�4.9311E+02 5.4695E+01 �5.5220E+02 �3.3000E+02 2.1504E+02 �3.3330E+02

1.5328E+01 5.9712E+02 1.4241E+02 �4.1368E+01 2.4895E+02 �2.3275E+03

�7.2407E+00 2.8360E+02 �3.6472E+01 3.0954E+01 �1.1558E+02 1.4337E+03

1.0753E+02 5.1962E+01 �5.3917E+02 3.5472E+02 �6.0068E+01 �4.8062E+01

�1.2390E+01 �2.5495E+02 1.6271E+02 8.6773E+02 3.8844E+03 �1.1163E+03

6.0970E+02 �1.3365E+02 1.7400E+03 2.0022E+03 �5.4197E+02 �1.1523E+02

Columns 13 through 18

5.5855E+02 4.8865E+03 6.4641E+01 �1.9659E+03 2.4750E�02 5.3200E�04

�7.4381E+01 3.3595E+02 �1.1803E+03 �1.6959E+03 8.3939E�04 6.3830E�02

2.6735E+03 5.5368E+02 �2.2251E+02 �1.3237E+03 �3.0177E�02 2.2963E�04

�2.7424E+02 1.9104E+01 �3.8298E+03 �8.4660E+03 �4.6777E�04 �4.5039E�02

1.2735E+02 4.8852E+00 �2.4842E+03 2.5022E+02 1.5306E�04 6.8932E�03

�1.2688E+02 3.9223E+00 �3.6677E+01 �2.9516E+02 �1.5121E�02 5.9888E�04

�2.9477E+02 �3.5277E+02 �2.3012E+03 �1.1447E+03 1.1435E�03 3.7038E�02

8.6546E+02 7.6423E+02 �8.5038E+01 8.7582E+01 3.1644E�02 �5.9920E�04

Columns 19 through 24

5.1817E�02 2.1143E�01 7.2169E�02 �2.3155E�02 �1.0599E�01 �6.0089E�03

1.8367E�02 4.3680E�03 2.7744E�02 2.8782E�01 1.5836E�02 2.2546E�01

2.4021E�03 1.0770E�02 1.1239E�02 1.3569E�03 �1.4266E�01 1.4087E�02

�1.8382E�03 5.5694E�03 1.4127E�03 1.8162E�02 4.4345E�03 1.5379E�01

1.3926E�02 7.1508E�04 1.4525E�02 1.3324E�01 �2.0947E�03 7.3041E�02

�1.7118E�02 �7.1617E�02 �2.7828E�02 9.7449E�03 3.1107E�02 1.3383E�02

1.0481E�02 1.3643E�02 1.5867E�02 1.1245E�01 �3.5845E�03 �6.5664E�02

�2.8411E�02 �1.1605E�01 �4.1730E�02 1.1847E�02 1.7639E�01 �3.4423E�02

Columns 25 through 30

�4.6556E�02 8.3174E�03 2.8783E�02 �2.5257E�03 1.0719E�01 8.6736E�01

1.5328E�02 �1.3682E�01 �4.5055E�01 �2.5054E�01 �1.4274E�02 5.9633E�02

�1.4105E�01 �8.1166E�02 5.1312E�02 �7.1952E�02 5.1307E�01 9.8280E�02

3.6378E�02 �1.0175E�02 5.9405E�02 �5.0245E�01 �5.2629E�02 3.3910E�03

�9.3163E�03 7.6132E�03 �2.7579E�02 3.0951E�01 2.4440E�02 8.6714E�04

�1.3772E�01 8.7244E�02 �1.4333E�02 �1.0376E�02 �2.4349E�02 6.9621E�04

4.1561E�02 2.1342E�01 9.2688E�01 �2.4099E�01 �5.6568E�02 �6.2619E�02

4.4446E�01 4.9245E�01 �1.2932E�01 �2.4876E�02 1.6609E�01 1.3565E�01

Columns 31 through 32

8.2397E�03 �1.8566E�01

�1.5045E�01 �1.6016E�01

�2.8362E�02 �1.2500E�01

�4.8818E�01 �7.9951E�01

�3.1666E�01 2.3630E�02

�4.6752E�03 �2.7874E�02

�2.9333E�01 �1.0810E�01

�1.0840E�02 8.2711E�03
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Dt =

Columns 1 through 6

3.4067E+00 4.8934E�02 6.7837E�01 1.1984E�01 �1.3647E�02 �2.8674E�01

4.8934E�02 3.2066E+00 3.4160E�02 8.9253E�01 4.1129E�01 1.0130E�02

6.7837E�01 3.4160E�02 1.4429E+00 1.8143E�01 �3.4086E�02 9.6979E�03

1.1984E�01 8.9253E�01 1.8143E�01 2.3992E+00 �4.1076E�01 2.0039E�02

�1.3647E�02 4.1129E�01 �3.4086E�02 �4.1076E�01 8.9345E�01 1.1979E�02

�2.8674E�01 1.0130E�02 9.6979E�03 2.0039E�02 1.1979E�02 2.9147E�01

1.6819E�02 �1.7796E+00 1.1186E�01 1.1030E+00 �1.6368E�01 4.2827E�03

�2.6614E�01 �4.1046E�05 �6.1139E�01 2.5951E�02 �1.3970E�02 3.2796E�02

Columns 7 through 8

1.6819E�02 �2.6614E�01

�1.7796E+00 �4.1046E�05

1.1186E�01 �6.1139E�01

1.1030E+00 2.5951E�02

�1.6368E�01 �1.3970E�02

4.2827E�03 3.2796E�02

5.8696E+00 3.4138E�02

3.4138E�02 3.5793E+00
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Table I. Open-Loop-System Characteristics of Phase 0 Model

Eigenvalues

Mode Real �Imaginary Frequency, Hz

1 �4.622E�3 9.243E�1 0.147

2 �4.682E�3 9.365E�1 .149

3 �4.876E�3 9.752E�1 .155

4 �2.294E�2 4.587E+0 .730

5 �2.349E�2 4.698E+0 .748

6 �2.746E�2 5.491E+0 .874

7 �4.629E�2 9.258E+0 1.474

8 �5.460E�2 1.092E+1 1.738

9 �5.916E�2 1.183E+1 1.883

10 �7.230E�2 1.446E+1 2.301

11 �8.918E�2 1.783E+1 2.838

12 �1.261E�1 2.522E+1 4.015

13 �1.267E�1 2.534E+1 4.032

14 �1.321E�1 2.642E+1 4.206

15 �1.380E�1 2.760E+1 4.392

16 �1.728E�1 3.457E+1 5.501

17 �1.941E�1 3.883E+1 6.180

18 �1.958E�1 3.915E+1 6.231

19 �2.033E�1 4.066E+1 6.471

20 �2.095E�1 4.191E+1 6.670

21 �2.316E�1 4.632E+1 7.372

22 �2.605E�1 5.211E+1 8.293

23 �2.817E�1 5.634E+1 8.966

24 �3.922E�1 7.845E+1 12.49

25 �5.294E�1 1.059E+2 16.85
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Table II. Eigenvalues of KA(s) Optimal Compensator System Matrix With �A= �A;max

�
(k; i; a) = (0:1; 2;0:5); �A;max= 0:6749

�

Complex

Real Real �Imaginary

�1.2941 �1.857E�1 1.115E�1

�.7197 �2.983E�1 7.433E�1

�.7088 �1.342E�1 8.200E�1

�.5482 �3.402E�2 4.579E+0

�.5462 �2.898E�2 4.685E+0

�.5361 �3.684E�2 5.468E+0

�.5283 �5.027E�2 9.245E+1

�.5066 �6.042E�2 1.090E+1

�.4936 �5.962E�2 1.183E+1

�.4746

�.4684

�.4610

�.4595

�.3868

�.3723

Table III. Closed-Loop Eigenvalues of Design Model Controlled by Optimal CompensatorK(s) With �A = �A;max

�
(k;i; a) = (0:1;2;0:5);�A;max= 0:6749

�

Complex

Open-loop mode Real �Imaginary Damping ratio, �

1 �4.426E�2 9.246E�1 0.0478

2 �7.079E�2 9.485E�1 .0744

3 �1.096E�1 9.645E�1 .1291

4 �2.716E�2 4.588E+0 .0059

5 �2.658E�2 4.698E+0 .0057

6 �3.237E�2 5.491E+0 .0059

7 �4.820E�2 9.258E+0 .0052

8 �5.723E�2 1.092E+1 .0052

9 �5.968E�2 1.183E+1 .0054

10 �7.234E�2 1.446E+1 .0050

11 �8.920E�2 1.784E+1 .0050

12 �1.261E�1 2.523E+1 .0050

13 �1.268E�1 2.534E+1 .0050

14 �1.321E�1 2.643E+1 .0050

15 �1.380E�1 2.760E+1 .0050

16 �1.729E�1 3.457E+1 .0050

17 �1.941E�1 3.883E+1 .0050

18 �1.958E�1 3.915E+1 .0050

19 �2.033E�1 4.066E+1 .0050

20 �2.097E�1 4.191E+1 .0050

21 �2.316E�1 4.632E+1 .0050

22 �2.606E�1 5.211E+1 .0050

23 �2.818E�1 5.634E+1 .0050

24 �3.923E�1 7.845E+1 .0050

25 �5.295E�1 1.059E+2 .0050
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Table IV. Eigenvalues of KA(s) Suboptimal Compensator System Matrix With �A= 0:9�A;max
�
(k; i; a) = (0:5; 1;0:1); �A;max= 0:6670

�

Complex

Real Real �Imaginary
a
�0.1000 �2.296E+0 4.230E+0

�.1612 �2.366E�1 4.690E+0

�.2945 �1.859E+0 5.232E+0

�.4769 �2.339E+0 8.859E+0

�1.8518 �3.535E+0 9.659E+0

�3.1977 �1.408E+0 1.103E+1

�6.8123
aRepeated eigenvalues of multiplicity 8.

Table V. Closed-Loop Eigenvalues of Design Model Controlled by Suboptimal CompensatorK(s) With �A= 0:9�A;max
�
(k;i; a) = (0:5;1;0:1);�A;max= 0:6670

�

Complex

Open-loop mode Real �Imaginary Damping ratio, �
a1
a2

3 �2.610E�1 8.872E�1 0.2822

4 �5.216E�1 4.620E+0 .1122

5 �1.767E�1 4.671E+0 .0378

or or or

�9.510E�2 4.653E+0 .0204

6 �4.760E�1 5.480E+0 .0865

7 �6.248E�1 9.237E+0 .0675

8 �9.416E�1 1.086E+1 .0838

9 �4.921E�1 1.178E+1 .0417

10 �8.062E�2 1.447E+1 .0056

11 �1.056E�1 1.785E+1 .0059

12 �1.266E�1 2.522E+1 .0050

13 �1.391E�1 2.538E+1 .0055

14 �1.336E�1 2.643E+1 .0051

15 �1.606E�1 2.766E+1 .0058

16 �1.747E�1 3.458E+1 .0050

17 �1.953E�1 3.884E+1 .0050

18 �2.038E�1 3.919E+1 .0052

19 �2.133E�1 4.071E+1 .0052

20 �2.122E�1 4.194E+1 .0051

21 �2.334E�1 4.634E+1 .0050

22 �2.623E�1 5.212E+1 .0050

23 �2.895E�1 5.639E+1 .0051

24 �3.924E�1 7.845E+1 .0050

25 �5.295E�1 1.059E+2 .0050
aNot discernible from data.
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Table VI. Eigenvalues of KA(s) Suboptimal Compensator System Matrix With �A= 0

�
(k; i; a) = (0:5; 1;0:1); �A;max = 0:6670

�

Complex

Real Real �Imaginary
a
�0.1000 �7.687E�1 5.570E�1

�.3663 �5.185E�1 7.661E�1

�2.5134 �1.039E+0 4.555E+0

�1.568E�1 4.661E+0

�9.240E�1 5.427E+0

�1.188E+0 9.153E+0

�1.808E+0 1.063E+1

�8.976E�1 1.161E+1
aRepeated eigenvalues of multiplicity 8.

Table VII. Closed-Loop Eigenvalues of Design Model Controlled by Suboptimal Compensator

K(s) With �A= 0

�
(k;i; a) = (0:5;1;0:1);�A;max= 0:6670

�

Complex

Open-loop mode Real �Imaginary Damping ratio, �
a1
a2

3 �2.578E�1 8.945E�1 0.2769

4 �5.448E�1 4.581E+0 .1181

5 �4.956E�1 4.647E+0 .1060

or or or

�9.308E�2 4.653E+0 .0200

6 �4.497E�1 5.503E+0 .0814

7 �5.895E�1 9.275E+0 .0634

8 �8.884E�1 1.092E+1 .0811

9 �4.683E�1 1.181E+1 .0396

10 �7.423E�2 1.446E+1 .0051

11 �9.251E�2 1.784E+1 .0052

12 �1.262E�1 2.523E+1 .0050

13 �1.287E�1 2.535E+1 .0051

14 �1.324E�1 2.643E+1 .0050

15 �1.417E�1 2.762E+1 .0051

16 �1.731E�1 3.457E+1 .0050

17 �1.943E�1 3.883E+1 .0050

18 �1.971E�1 3.916E+1 .0050

19 �2.048E�1 4.067E+1 .0050

20 �2.100E�1 4.192E+1 .0050

21 �2.319E�1 4.633E+1 .0050

22 �2.608E�1 5.211E+1 .0050

23 �2.828E�1 5.635E+1 .0050

24 �3.923E�1 7.845E+1 .0050

25 �5.295E�1 1.059E+2 .0050
aNot discernible from data.
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Figure 2. Closed-loop system with exogenous inputs.
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Figure 3. Loop-shaping procedure.
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Figure 4. Schematic of CSI Phase 0 Evolutionary Model.
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Figure 5. Open-loop 25-mode nominal system (Gf(s)).
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(a) 9-mode nominal system (G(s)).
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(b) 16-mode truncated system (�G(s)).

Figure 6. Unweighted open-loop nominal and truncated systems.
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(a) Optimal compensator (K(s)) with � = �max.
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(b) Suboptimal compensator (K(s)) with � = 0:9�max.

Figure 7. Unweighted optimal and suboptimal compensators (K(s)) with �max= 0:4417.
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Figure 8. Weighted open-loop 9-mode system (GA(s)) with GA(s) =
0:1

(s + 0:5)2
G(s).
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Figure 9. Weighted optimal compensator (KA(s)) with (k; i; a) = (0:1; 2; 0:5) and �A = �A;max = 0.6749.
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Figure 10. Weighted optimal compensator (K(s)) with (k; i; a) = (0:1; 2; 0:5), �A = �A;max = 0.6749, and

K(s) = 0:1
(s + 0:5)2

KA(s).
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(a) Condition from inequality (41).
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(b) Condition from inequality (40).

Figure 11. Robustness conditions for inequalities (40) and (41) for weighted optimal compensator (K(s)) with

�A = �A;max = 0:6749 and K(s) = 0:1
(s + 0:5)2

KA(s).
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Figure 12. Weighted open-loop 9-mode nominal system (GA(s)) with GA(s) =
0:5

(s + 0:1)
G(s).
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Figure 13. Weighted suboptimal compensator (KA(s)) with (k; i; a) = (0:5; 1; 0:1), �A = 0:9�A;max, and
�A;max= 0:667.
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Figure 14. Weighted suboptimal compensator (K(s)) with �A = 0:9�A;max, �A;max = 0:667, and K(s) =
0:5

(s + 0:1)
KA(s).
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(b) Condition from inequality (40).

Figure 15. Robustness conditions for inequalities (40) and (41) for weighted suboptimal compensator (K(s))

with �A = 0:9�A;max, �A;max= 0:667, and K(s) = 0:5
(s + 0:1)

KA(s).
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Figure 16. Weighted suboptimal compensator (KA(s)) with (k; i; a) = (0:5; 1; 0:1) and �A = 0:
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Figure 17. Weighted suboptimal compensator (K(s)) with �A = 0 and K(s) = 0:5
(s + 0:1)

KA(s).
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Figure 18. Robustness conditions for inequalities (40) and (41) for weighted suboptimal compensator (K(s))

with �A = 0 and K(s) =
0:5

(s + 0:1)
KA(s).
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Figure 19. Input time history of actuator 7 for optimal compensator at (k; i; a) = (0:1; 2; 0:5).
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Figure 20. Output time history of accelerometer 7 for optimal compensator at (k; i; a) = (0:1; 2; 0:5). In this
�gure the two curves coincide.
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Figure 21. Input time history of actuator 8 for optimal compensator at (k; i; a) = (0:1; 2; 0:5).
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Figure 22. Output time history of accelerometer 8 for optimal compensator at (k; i; a) = (0:1; 2; 0:5). In this
�gure the two curves coincide.
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Figure 23. Input time history of actuator 7 for optimal compensator at (k; i; a) = (2; 2; 0:5).
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Figure 24. Output time history of accelerometer 7 for optimal compensator at (k; i; a) = (2; 2; 0:5).
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Figure 25. Input time history of actuator 8 for optimal compensator at (k; i; a) = (2; 2; 0:5).
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Figure 26. Output time history of accelerometer 8 for optimal compensator at (k; i; a) = (2; 2; 0:5).
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Figure 27. Input time history of actuator 7 for suboptimal compensator at �A = 0:9�A;max and �A;max= 0:667.
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Figure 28. Output time history of suboptimal accelerometer 7 at �A = 0:9�A;max and �A;max= 0:667.
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Figure 29. Input time history of actuator 8 for suboptimal compensator at �A = 0:9�A;max and �A;max= 0:667.
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Figure 30. Output time history of suboptimal accelerometer 8 at �A = 0:9�A;max and �A;max= 0:667.
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Figure 31. Input time history of actuator 7 for suboptimal compensator at �A = 0.
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Figure 32. Output time history of suboptimal accelerometer 7 at �A = 0.
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Figure 33. Input time history of actuator 8 for suboptimal compensator at �A = 0.
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Figure 34. Output time history of suboptimal accelerometer 8 at �A = 0.
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